

SCHEME & SYLLABUS OF UNDERGRADUATE DEGREE COURSE

Artificial Intelligence & Machine Learning

V-VI Semester

Effective for the students admitted in year 2020-21 and onwards.

			THEO	RY							
S.No	Category		Course	Co hrs	ontac s/wee	et ek	Marks				Cr
•			7 1'41								
		Code	Title	L	T	P	Exam Hrs	IA	ETE	Total	
1	ESC	5AM3-01	Mathematics and Statistics	2	0	0	2	20	80	100	2
2		5AM4-02	Compiler Design	3	0	0	3	30	120	150	3
3		5AM4-03	Operating Systems	3	0	0	3	30	120	150	3
4		5AM4-04	Artificial Neural Networks	3	0	0	3	30	120	150	3
5		5AM4-05	Analysis of Algorithms	3	0	0	3	30	120	150	3
6	DCC	Professional	Elective 1: (anyone)	2	0	0	2	20	80	100	2
	PCC/ PEC	5AM5-11	AI in Healthcare								
		5AM5-12	Human-Computer Interaction								
		5AM5-13	Information Security System								
			Sub Total	16	0	0		160	640	800	16
PRACTICAL & SESSIONAL											
7		5AM4-21	Compiler Design Lab	0	0	2	2	30	20	50	1
8	PCC	5AM4-22	Neural Network Lab	0	0	2	2	30	20	50	1
9		5AM4-23	Analysis of Algorithms Lab	0	0	2	2	30	20	50	1
10		5AM4-24	Advance Java Lab	0	0	2	2	30	20	50	1
11	PSIT	5AM7-30	Industrial Training	0	0	1		75	50	125	2.5
12	Anandam	5AD8-00	ANANDAM						100	100	2
		Sub- Total	·	0	0	9		195	230	425	8.5
		TOTAL OF V SEMESTER		16	0	9		355	870	1225	24.5

B. Tech. Artificial Intelligence and Machine Learning 3rd Year – V Semester

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

YEARS OF CELEBRATING THE MARKATMA

OFFICE OF THE DEAN ACADEMICS B.Tech. Artificial Intelligence and Machine Learning

	<u>3rd Year – VI Semester</u>										
			THEO	RY							
SN	Category	Course		Co hrs	Contact hrs./week		Marks				Cr
		Code	Title	L	T	Р	Exam Hrs	IA	ETE	Tota 1	
1	ESC	6AM3-01	Digital Image Processing	2	0	0	2	20	80	100	2
2		6AM4-02	Natural Language Processing	3	0	0	3	30	120	150	3
3		6AM4-03	Soft Computing	3	0	0	3	30	120	150	3
4		6AM4-04	Computer Architecture and Organization	3	0	0	3	30	120	150	3
5	PCC/	6AM4-05	Pattern Recognition	3	0	0	3	30	120	150	3
6	PEC	Professional I	Elective 1 (anyone)	3	0	0	3	30	120	150	3
		6AM5-11	Cloud Computing								
		6AM5-12	Distributed System								
		6AM5-13	Data Mining and Business Intelligence								
		Sub-Total	·	17	0	0		170	680	850	17
			PRACTICAL &	SESSI	ONA	L					
7		6AM4-21	Digital Image Processing Lab	0	0	3	2	45	30	75	1.5
8	PCC	6AM4-22	Natural Language Processing Lab	0	0	3	2	45	30	75	1.5
9	-	6AM4-23	Soft Computing Lab	0	0	3	2	45	30	75	1.5
10		6AM4-24	Mobile Application Development Lab	0	0	3	2	45	30	75	1.5
11	Anandam	6AD8-00	ANANDAM						100	100	2
		Sub- Total		0	0	12		180	220	400	8
		TOTAL OF	TOTAL OF VI SEMESTER		0	12		350	900	1250	25

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

SCHEME & SYLLABUS OF UNDERGRADUATE DEGREE COURSE

Artificial Intelligence & Machine Learning

V-VI Semester

Effective for the students admitted in year 2020-21 and onwards.

5AM3-01: Mathematics and Statistics

	Credit: 2	Max Marks: 100 (IA :20, ETH	E :80)
	2L+ 0T+ 0P	End Term Exams: 2hr	
S.No.	Conten	ts	Hours
1	Introduction: Objective, scope, and outcome	of the course	1
2	Introduction: Engineering application of optimization, Statement and classification of the optimization problem, single variable and multivariable optimization with and without constraints.		
3	Project Scheduling: Project Scheduling by PERT and CPM, Network Analysis. Sequencing Theory: General Sequencing problem n-jobs through 2 machines & 3 machines and 2-jobs through m machines.		
4	Transportation problem: Introduction, balanced and unbalanced transportation, northwest corner rule, lowest cost entry method, and Vogel's approximation, optimality test, degeneracy in transportation problem. Assignment problem: Introduction, Hungarian method.		
5	Applied Statistics: Introduction to statistics and data analysis- Mean, Mode, Median, variance and standard deviation. Testing of hypothesis – Introduction-Types of errors, critical region, the procedure of testing hypothesis-Large sample tests- Z test for Single Proportion, Difference of Proportion, mean and difference of means.		
6	Small sample tests- Students t-test, F-test- chi-square test- the goodness of fit - independence of attributes- Design of Experiments - Analysis of variance – one- and two-way classifications - CRD-RBD- LSD.		
	Total		30

- Fundamentals of Mathematical statistics- by S. C. Gupta and V. K. Kapoor; S. Chand & sons
- Advanced Engg. Mathematics by Erwin Kreyszig John; willey & sons
- Advanced Engg. Mathematics by R. K. Jain & S. R. K Iyenger; Narosa publishing House.
- Higher Engg. Mahematics by Dr. B. S. Grewal- Khanna publications

5AM4-02: Compiler Design

	Credit: 3	Max Marks: 150 (IA :30, ETE:120)	
	3L+ 0T+ 0P	End Term Exams: 3hr	
S.No.	(Contents	Hours
1			01
1	Introduction: Objective, scope, and outco	ome of the course.	01
2	Introduction: Objective, scope, and outcome of the course. Compiler, Translator, Interpreter definition, Phase of the compiler, Bootstrapping, Review of Finite automata lexical analyzer, Input, Recognition of tokens, Idea about LEX: A lexical analyzer generator, Error handling.		06
3	Review of CFG Ambiguity of grammars: Introduction to parsing. Top-down parsing, LL grammars & passers error handling of LL parser, Recursive descent parsing predictive parsers, bottom-up parsing, Shift reduce parsing, LR parsers, Construction of SLR, Conical LR & LALR parsing tables, parsing with ambiguous grammar. Operator precedence parsing, Introduction of automatic parser generator: YACC error handling in LR parsers.		10
4	Syntax directed definitions; Construction of syntax trees, S- Attributed Definition, L- attributed definitions, Top-down translation. Intermediate code forms using postfix notation, DAG, three address code, TAC for various control structures, Representing TAC using triples and quadruples Boolean expression and control structures		10
5	Storage organization: Storage allocation, Strategies, Activation records, accessing local and non-local names in a block-structured language, Parameter passing, Symbol table organization, Data structures used in symbol tables.		08
6	Definition of basic block control flow	graphs; DAG representation of basic block,	0.
	Advantages of DAG, Sources of optimiz	ation, Loop optimization, Idea about global data	07
	now analysis, Loop invariant computation	n, Peepnoie optimization, issues in the design of Code generation from DAG	
	code generator, A simple code generator,	Total	42

Suggested Books

• A.V. Aho, J. D. Ullman, Monica S. Lam and R. Sethi, Compilers Principles, Techniques and Tools (2 ed.), Pearson Education, 2005. ISBN 978-0321547989.

Reference Books

- John Levine, Tony Mason and Doug Brown, Lex and Yacc (1 ed.), O'Reilly Media, 1992. ISBN 978-1565920002.
- Kenneth C. Louden, Compiler Construction Principles and Practice (1 ed.), Course Technology Inc, 1997. ISBN 978-0534939724.
- Dhamdhere, Compiler Construction (2 ed.), Macmillan Publication, 2003. ISBN 978-0333904060

5AM4-03: Operating Systems

Credit: 3		Max Marks: 150 (IA :30, ETE:120)		
	3L+ 0T+ 0P	End Term Exams: 3hr		
S.No.	Conten	ts	Hours	
1	Introduction: Objective, scope and outcome	e of the course.	01	
2	Introduction and History of Operating systems: Structure and operations; processes and files Processor management: inter-process communication, mutual exclusion, semaphores, wait and signal procedures, process scheduling, and algorithms, critical sections, threads, multithreading		08	
3	Memory management: contiguous memory allocation, virtual memory, paging, page table structure, demand paging, page replacement policies, thrashing, segmentation, case study		08	
4	Deadlock: Shared resources , resource allow models, deadlock detection, deadlock avoida Device management: devices and their con- handling, disk scheduling algorithms, and po	cation, and scheduling, resource graph nce, deadlock prevention algorithms haracteristics, device drivers, device licies.	10	
5	File management: file concept, types and structures, directory structure, cases studies, access methods and matrices, file security, user authentication		07	
6	UNIX and Linux operating systems as case studies; Time OS and case studies of Mobile OS		06	
	Total		40	

- Silberschatz, P. B. Galvin and G. Gagne, Operating System Concepts (9 ed.), John Wiley, 2012. ISBN 978-1118063330.
- Tanenbaum, Modern Operating Systems (3 ed.), Prentice Hall India Learning Private Limited, 2019. ISBN 978-8120339040.
- W. Stallings, Operating Systems Internals and Design Principles (7 ed.), Prentice-Hall, 2013. ISBN 978-9332518803
- Operating Systems William Stallings, Pearson Education Asia (2002)
- Operating Systems Nutt, Pearson Education Asia (2003)

Max Marks: 150 (IA :30, ETE:120) Credit: 3 3L+ 0T+ 0P End Term Exams: 3hr S.No. Hours **Contents** Introduction: Objective, scope, and outcome of the course. 1 01 Artificial Neural Networks Introduction and ANN Structure, Biological neurons and artificial neurons. Model of an ANN. Activation functions are used in ANNs. Typical 2 classes of network architectures. supervised and unsupervised learning rules, Neural 07 Network applications: Pattern classification, Recognition of Olympic games symbols, Recognition of Printed Characters. Recognition of handwritten characters Mathematical Foundations and Learning mechanisms: Re-visiting vector and matrix algebra, State-space concepts, Concepts of optimization, Error-correction learning. 3 8 Memory-based learning, Hebbian learning. Competitive learning. Delta learning rule, Windrow-Hoff learning rule. Single-layer perceptron: Structure and learning of perceptron, Pattern classifier, 4 7 introduction and Bayes' classifiers, Perceptron as a pattern classifier, Perceptron convergence. Limitations of a perceptron: Feedforward neural network: Feedforward ANN, Structures of Multi-layer feedforward networks. Backpropagation algorithm, Backpropagation - training and convergence, 5 8 Functional approximation with backpropagation. Practical and design issues of backpropagation learning. Self-organizing networks: Two Basic Feature Mapping Models, Self-Organization Map, SOM Algorithm, Properties of Feature Map, Computer Simulations, Learning Vector 7 6 Quantization, Adaptive Pattern Classification Korhonen algorithm, Hopfield Networks: Hopfield network algorithm, Adaptive resonance theory: Network and learning rules. Total 38

5AM4-04: Artificial Neural Networks

- Neural Networks a Comprehensive Foundations, Simon Haykin, PHI edition.
- B. Yegnanarayana Artificial neural network PHI Publication
- Satish Kumar, "Neural Networks: A classroom approach", Tata McGraw Hill, 2004.
- Robert J. Schalkoff, "Artificial Neural Networks", McGraw-Hill International Editions, 1997.
- Neural Networks in Computer Intelligence, Li-Min Fu MC GRAW HILL EDUCATION 2003
- Kevin L. Priddy, Paul E. Keller Artificial neural networks: An Introduction SPIE Press, 2005

Ckhakug rauhah fo'ofo | ky; , chakug OFFICE OF THE DEAN ACADEMICS

5AM4-05: Analysis of Algorithms

Credit: 3		Max Marks: 150 (IA :30, ETE:120)		
	3L+ 0T+ 0P	End Term Exams: 3hr		
S.No.		Contents	Hours	
1	Introduction: Objective, scope, and out	come of the course.	01	
2	Background: Review of Algorithm,	Complexity Order Notations: definitions and	06	
	calculating complexity. Divide And C	onquer Method: Binary Search, Merge Sort,		
	Quick sort, and Strassen's matrix multipl	ication algorithms.		
3	Greedy Method: Knapsack Problem, J	ob Sequencing, Optimal Merge Patterns,		
	and Minimal Spanning Trees.			
	Dynamic Programming : Matrix (Chain Multiplication. Longest Common	09	
	Subsequence and 0/1 Knapsack Problem			
4	4Branch And Bound: Traveling Salesman Problem and Lower Bound Theory. Backtracking Algorithms and queens' problem.08Pattern Matching Algorithms: Naïve and Rabin Karp string matching algorithms, KMP Matcher and Boyer Moore Algorithms.08			
5	Assignment Problems: Formulation of Assignment and Quadratic Assignment Problem. Randomized Algorithms- Las Vegas algorithms, Monte Carlo algorithms, a randomized algorithm for Min-Cut, randomized algorithm for 2- SAT. Problem definition of Multicommodity flow, Flow shop scheduling, and Network capacity0808			
6	Problem Classes Np, Np-Hard, And N NP-Complete Problems. Decision Problems - Satisfiability problem an Algorithms for Vertex Cover and Set Co	Np-Complete: Definitions of P, NP-Hard and lems. Cook's Theorem. Proving NP-Complete and Vertex Cover Problem. Approximation over Problem.	08	
		Total	40	

- T.H. Cormen, C.E. Leiserson, R.L. Rivest "Introduction to Algorithms", PHI.
- Sedgewich, Algorithms in C, Galgotia
- Berman. Paul, "Algorithms, Cengage Learning".
- Richard Neopolitan, Kumar SS Naimipour, "Foundations of Algorithms"
- Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education, Reprint 2006
- E. Horowitz, S. Sahni, and S. Rajsekaran, "Fundamentals of Computer Algorithms," Galotia Publication

	Credit: 2	Max Marks: 100 (IA :20, ETH	E:80)	
	2L+ 0T+ 0P	End Term Exams: 2hr		
S.No.	Cor	ntents	Hours	
1	Introduction: Objective, scope, and out	come of the course.	01	
2	Course Overview, : Introduction to Module, Operationalizing Consumerism Using AI, Operationalizing a New Supply Chain, Machine Learning, Artificial Intelligence, and Decision Support.			
3	Journey Mapping and Pain Points, Patient Management, Preventive Screening, Avoi Predictor of Cost, Data Sourcing, Data En	6		
4	Provider Taxonomies and Relationships, Predictive Modeling Process, Analytic5Maturity Model, Identifying Historic Addressable Opportunity, Predicting Addressable Opportunity, Measuring Predictive Accuracy, Making Recommendations5			
5	A review of the state of AI in health care, A review of the pending research and development CDS open problems, A review of important AI data mining technologies and their application to medicine,			
6	A description of BDA and its application to health care, The use of technology underneath, Summary of important issues of AI in health care. Physician point of view and case studies on Radiology and Physiological Tests			
	Τα	otal	30	

5AM5-11: AI in Healthcare

Suggested Books

• Prashant Natarajan, John C. Frenzel, and Detlev H. Smaltz Demystifying Big Data and Machine Learning for Healthcare (1 ed.), CRC Press, 2017. ISBN 978-

- Arjun Panesar, Machine Learning and AI for Healthcare: Big Data for Improved Health Outcomes (1 ed.), Apress, 2019. ISBN 978-1484237984.
- Raghupathi W, Raghupathi V., Big data analytics in healthcare: promise and potential, Health info science and syst., 2014.
- Chen Y, Argentinis E, et al., Clinical therapeutics, IBM Watson: how cognitive computing can be applied to big data challenges in life sciences research. 2016.

^{• 1138032637.}

5AM5-12: Human-Computer Interaction

Credit: 2		Max Marks: 100 (IA :20, ETE:80)	
	2L+ 0T+ 0P	End Term Exams: 2hr	
S.No.		Contents	Hours
1	Introduction: Objective, scope and outco	ome of the course.	01
2	Historical evolution of the field, Interactiv	e system design, Concept of usability -definition	
	and elaboration, HCI and software Engin	eering, GUI design and Aesthetics, Prototyping	02
	techniques.		
2	Model-based Design and evaluation: Basic idea, introduction to different types of		
	models, GOMS family of models (KLM a	nd CMN- GOMS), Fitts' law and Hick-Hyman's	04
	law, Model-based design case studies.		
3	Guidelines in HCI: Schneiderman's eight, golden rules, Norman's seven principles,		
	Norman's model of interaction, Nielsen's ten heuristics with examples of its use Heuristic		
	evaluation, Contextual inquiry, Cognitive walkthrough.		
4	Empirical research methods in HCI: In	troduction (motivation, issues, research question	
	formulation techniques), Experiment desig	gn, and data analysis (with an explanation of one-	06
	way ANOVA).		
5	Task modeling and analysis: Hierarchic	al task analysis (HTA), Engineering task models	
	and Concur Task Tree (CTT), Introduction	n to formalism in dialog design, design using FSM	07
	(finite state machines) Statecharts and (classical) Petri Nets in dialog design.		
6	Introduction to CA, CA types, the relevance of CA in IS design Model Human Processor		
	(MHP), OOP- Introduction OOM- Object	-Oriented Modeling of User Interface Design.	
		Total	30
a			

- Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, —Human-Computer Interaction, 3rd Edition, Pearson Education, 2004Brian Fling, —Mobile Design and Development, First Edition, O'Reilly Media Inc., 2009)
- Bill Scott and Theresa Neil, -Designing Web Interfaces, First Edition, O'Reilly, 2009. (

5AM5-13: Information Security System

Credit: 2		Max Marks: 100 (IA :20, ETE:80)
	2L+ 0T+ 0P	End Term Exams: 2hr	
S.No.	Con	tents	Hours
1	Introduction: Objective, scope, and outco	me of the course.	01
2	Introduction to security attacks: servi	ces and mechanism, classical encryption	
	techniques- substitution ciphers and trans	position ciphers, cryptanalysis, stream and	05
	block ciphers.		
3	Modern block ciphers: Block Cipher strue	cture, Data Encryption Standard (DES) with	
	an example, the strength of DES, Design pr	inciples of block cipher, AES with structure,	
	its transformation functions, key expansion	on, example, and implementation. Multiple	0.6
	encryption and triple DES, Electronic C	ode Book, Cipher Block Chaining Mode,	06
	Cipher Feedback mode, Output Feedback mode, Counter mode.		
4.	Public Key Cryptosystems with Applicat	ions: Requirements and Cryptanalysis, RSA	
	cryptosystem, Rabin cryptosystem, Elgama	l cryptosystem, Elliptic curve cryptosystem.	05
5	Cryptographic Hash Functions, their	applications: Simple hash functions, its	07
	requirements and security, Hash functions	s based on Cipher Block Chaining, Secure	-
	Hash Algorithm (SHA). Message Authenti	cation Codes, its requirements and security,	
	MACs based on Hash Functions, Macs based	sed on Block Ciphers. Digital Signature, its	
	properties, requirements and security, various digital signature schemes (Elgamal and		
	Schnorr), NIST digital Signature algorithm.		
6	Key management and distribution: symp	netric key distribution using symmetric and	06
	asymmetric encryptions, distribution of public keys, X.509 certificates, public key		
	infrastructure. Remote user authentication with symmetric and asymmetric encryption,		
	Kerberos Web Security threats and app	proaches, SSL architecture and protocol,	
	Transport layer security, HTTPS, and SSH		
	То	tal	30

- Security in Computing, Fourth Edition, by Charles P. Pfleeger, Pearson Education
- Cryptography And Network Security Principles And Practice, Fourth or Fifth Edition, William Stallings, Pearson
- Modern Cryptography: Theory and Practice, by Wenbo Mao, Prentice Hall.
- Network Security Essentials: Applications and Standards, by William Stallings. Prentice Hall.

5AM4-21: Compiler Design Lab

	Credit: 1	Max Marks: 50 (IA :30, ETE:20)			
	0L+ 0T+ 2P	End Term Exams: 2hr			
S.No.	List o	f Experiments			
1	Introduction: Objective, scope and outcome	Introduction: Objective, scope and outcome of the course.			
2	To identify whether a given string is a keyw	vord or not.			
3	Count total no. of keywords in a file. [Takin	ng file from user]			
4	Count total no of operators in a file. [Taking file from user]				
5	Count the total occurrence of each character in a given file. [Taking file from user]				
6	Write a C program to insert, delete and display the entries in the Symbol Table.				
7	Write a LEX program to identify following:				
	1 Valid mobile number				
	2 Valid url				
	2. Valid identifier				
	4 Valid date (dd/mm/yyyy)				
	5 Valid time (hh·mm·ss)				
8	Write a lex program to count blank spaces y	words lines in a given file.			
Ũ	witte a ten program to count chain spaces,				
9	Write a lex program to count the no. of vow	els and consonants in a C file.			
10	Write a YACC program to recognize string	s aaab,abbb using a^nb^n, where b>=0.			
11	Write a YACC program to evaluate an arith	metic expression involving operators +,-,* and /.			
12	Write a YACC program to check validity of	f a strings abcd, aabbcd using grammar			
	a^nb^nc^md^m, where n, m>0				
13	Write a C program to find first of any gram	mar.			

5AM4-22: Neural Networks Lab

Credit: 1		Max Marks: 50 (IA :30, ETE:20)		
	0L+ 0T+ 2P	End Term Exams: 2hr		
S.No.	List of Experiments			
1	Write a program to implement Percept	ron		
2	Write a program to implement Multilayered feedforward neural Network			
3	Implement Binary Classification Using neural network			
4	To study Convolutional Neural Network and Recurrent Neural Network			
5	Implement Multi-Class Classification using Neural network			
6	Implement Binary Classification Using CNN			
7	Implement Multi-Class Classification Using CNN			
8	Implement traveling salesperson problem (tsp) using Self Organizing maps			
9	Write a program to implement Classification using Back-Propagation			
10	To study and implement the Weighted	machine problem		

5AM4-23: Analysis of Algorithms Lab

	Credit: 1	Max Marks: 50 (IA :30, ETE:20)	
	0L+ 0T+ 2P	End Term Exams: 2hr	
S.No.	List	of Experiments	
1	Sort a given set of elements using the Qui	cksort method and determine the time required to sort	
	the elements. Repeat the experiment for	different values of n, the number of elements in the list to	
	be sorted and plot a graph of the time t	aken versus n. The elements can be read from a file or can	
	be generated using the random number ge	nerator.	
2	Implement a parallelized Merge Sort algo	orithm to sort a given set of elements and determine the	
	time required to sort the elements. Repea	at the experiment for different values of n, the number of	
	elements in the list to be sorted and plo	ot a graph of the time taken versus n. The elements can be	
	read from a file or can be generated using	the random number generator.	
3	a. Obtain the Topological ordering of ve	rtices in a given digraph. b. Compute the transitive	
	closure of a given directed graph using W	arshall's algorithm.	
4	Implement 0/1 Knapsack problem using Dynamic Programming.		
5	From a given vertex in a weighted connect	cted graph, find shortest paths to other vertices using	
	Dijkstra's algorithm.		
í.	Find Minimum Cost Spanning Tree of a g	iven undirected graph using Kruskal's algorithm.	
6			
	a. Print all the nodes reachable from a giv	en starting node in a digraph using the BFS method.	
7	b. Check whether a given graph is connec	ted or not using the DFS method.	
8.	Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.		
9.	Implement All-Pairs Shortest Paths Proble	em using Floyd's algorithm.	
10	Implement N Queen's problem using Back	xtracking.	

5AM4-24: Advance Java Lab

	Credit: 1	Max Marks: 50 (IA :30, ETE:20)
	0L+ 0T+ 2P End Term Exams: 2hr	
S.No.	Lis	t of Experiments
1	Introduction To Swing, MVC Architectur	e, Applets, Applications and Pluggable Look and Feel,
	Basic swing components: Text Fields, But	ttons, Toggle Buttons, Checkboxes, and Radio Buttons
2	Java database Programming, java.sql Pack	age, JDBC driver, Network Programming With java.net
	Package, Client and Server Programs, Con	ntent And Protocol Handlers
3	RMI architecture RMI registry writing	distributed application with RMI Naming services
5	Nomine And Directory Services Occurring	astrouted appreadon with Kivit, tvanning services,
	Naming And Directory Services, Overview	w of JNDI, Object serialization and Internationalization
4	J2EE architecture, Enterprise application concepts, n-tier application concepts, J2EE platform,	
	HTTP protocol, web application, Web containers and Application servers	
5	Server side programming with Java S	erulat HTTP and Serulat Serulat ADI life cycle
3	Server side programming with Java Servici, 11111 and Servici, Servici, Servici AFI, me cycle,	
	configuration and context, Request and Response objects, Session handling and event handling,	
	Introduction to filters with writing simple filter application	
6	JSP architecture, JSP page life cycle, JSP elements, Expression Language, Tag Extensions, Tag	
	Extension API, Tag handlers, JSP Fragmen	nts, Tag Files, JSTL, Core Tag library, overview of XML
	Tag library, SQL Tag library and Function	ns Tag library

Credit: 2		Max Marks: 100 (IA :20, ETE	:80)
	2L+0T+0P	End Term Exams: 2hr	
S.No.	Conte	nts	Hours
1	Introduction: Objective, scope, and outco	me of the course.	01
2	Introduction to Image Processing: Digital Image representation, Sampling & Quantization, Steps in image Processing, Image acquisition, color image representation.		04
3	Image Transformation & Filtering: Intensity transform functions, histogram processing, Spatial filtering, Fourier transforms and its properties, frequency domain filters, color models, Pseudo coloring, color transforms, Basics of Wavelet Transforms.		06
4	Image Restoration: Image degradation a Noise Filters, degradation function, Inverse	and restoration process, Noise Models, e Filtering, Homomorphism Filtering.	07
5	Image Compression: Coding redundancy, Interpixel redundancy, Psychovisualredundancy, Huffman Coding, Arithmetic coding, Lossy compression techniques,JPEG Compression.		05
6	Image Segmentation & Representation: Point, Line and Edge Detection, Thresholding, Edge and Boundary linking, Hough transforms, Region-Based Segmentation, Boundary representation, Boundary Descriptors.		05
	Tota	1	28

6AM3-01: Digital Image Processing

- Rafael C Gonzalez, Richard E Woods, "Digital Image Processing", 4th Edition, Pearson, 2018.
- Kenneth R. Castleman, Digital Image Processing Pearson, 2006.
- Anil K.Jain, "Fundamentals of Digital Image Processing", Person Education, 2003.

	Credit: 3	Max Marks: 150 (IA :30, ETE	:120)
3L+ 0T+ 0P End Term Exams: 3hr			
S.No.	Со	ntents	Hours
1	Introduction: Objective, scope and outcome	e of the course.	1
2	Introduction to NLP: Regular Expressions, Words, Corpora, Text Normalization, Minimum Edit distance, N gram Language Models, Evaluating Language Models.		6
3	Syntactic Analysis: English Word Classes, The Penn Treebank Part-of-Speech Tagset, Part-of-Speech Tagging, HMM Part-of-Speech Tagging, Maximum Entropy Markov Models, Grammar Rules for English, Treebanks, Grammar Equivalence and Normal form, Lexicalized Grammar.		8
4	Semantic Analysis: Representation of Sentence Meaning: Computational Desiderata for Representations, Model Theoretic Semantics, First-Order Logic Event and State Representations, Description Logics, Semantic roles, Semantic Role labeling.10		10
5	Sequence parsing with recurrent networks:Simple Recurrent Networks,Applications of RNNs and Deep Networks:Stacked and Bidirectional RNNs,Managing Context in RNNs:LSTMs and GRUs, Words, Characters, and Byte-Pairs.		9
6	Case Study: Sentiment Classification, Dialog Systems, and Chatbots. 6		6
	Tota	1	40

6AM4-02: Natural Language Processing

- Natural Language understanding by James Allen, Pearson Education 2008
- NLP: A Paninian Perspective by Akshar Bharati, Vineet Chaitanya, and Rajeev Sangal, Prentice Hall 1995
- Meaning and Grammar by G. Chirchia and S. McConnell Ginet, MIT Press 2000
- An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition by Daniel Jurafsky and James H. Martin, Pearson Education 2008
- Natural language processing in Prolog by Gazdar, & Mellish, Addison-Wesley 1989

6AM4-03: Soft Computing

Credit: 3		Max Marks: 150 (IA :30, ETE:120))
	3L+ 0T+ 0P End Term Exams: 3hr		
S.No	Cor	ntents	Hours
1	Introduction: Objective, scope, and out	come of the course.	01
2	Introduction to Soft Computing & Neural Networks: Brief Review of NeuralNetwork, Evolution of Computing: Soft Computing Constituents, FromO6Conventional AI to Computational Intelligence: Machine Learning Basics		06
3	Fuzzy Logic: Fuzzy Sets, Operations on Functions: Fuzzy Rules and Fuzzy Rea Expert Systems, Fuzzy Decision Making	Fuzzy Sets, Fuzzy Relations, Membership asoning, Fuzzy Inference Systems, Fuzzy . Applications of Fuzzy Set,	07
4	GENETIC ALGORITHMS: Main Operators- Genetic Algorithm Based Optimization-Principle of Genetic Algorithm- Genetic Algorithm with Directed Mutation- Comparison of Conventional and Genetic Search Algorithms Issues of GA in practical implementation. Introduction to Particle swarm optimization-PSO operators-GA and PSO in engineering applications. Machine Learning Approach to Knowledge Acquisition		09
5	New trends in Evolutionary Algorithm MM-AS, Ant Miner, Snake-Ant Algorith Algorithm. Co-evolution, Plasticity and I "No free lunch" theorem.	ns: Ant Colony Optimization: Ant system, nm. Artificial Bee Colony, Cuckoo Search ifetime learning, Lamarckian learning, the	06
6	Matlab/Python Lib: Introduction to Ma Functions and Files, Study of neural n Simple implementation of Artificial Neu	atlab/Python, Arrays and array operations, etwork toolbox and fuzzy logic toolbox, ral Network and Fuzzy Logic	09
	Te	otal	38

- Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis & Applications, S. Rajasekaran, G. A. Vijayalakshami, PHI.
- Genetic Algorithms: Search and Optimization, E. Goldberg.
- L.Fausett, Fundamentals of Neural Networks, Prentice Hall
- T.Ross, Fuzzy Logic with Engineering Applications, Tata McGraw Hill

6AM4-04: Computer Architecture and Organization

Credit: 3		Max Marks: 150 (IA :30, ETE:120)	
	3L+ 0T+ 0P End Term Exams: 3hr		
S.No.	Io. Contents		Hours
1	Introduction: Objective, scope and outcom	me of the course.	01
2	Computer Data Representation: Base representation, Register Transfer and M Transfer language, Register Transfer, Buse Transfer), Arithmetic Micro-Operations, L logical shift unit. Basic Computer Organ computer instructions, Timing and Contro output and interrupt, Complete comput Accumulator Unit.	sic computer data types, Complements, Fixed point Aicro-operations: Floating point representation, Register and Memory Transfers (Tree-State Bus Buffers, Memory ogic Micro-Operations, Shift Micro-Operations, Arithmetic ization and Design Instruction codes, Computer registers, l, Instruction cycle, Memory-Reference Instructions, Input- ter description, Design of Basic computer, design of	10
3	Programming The Basic Computer: Introduction, Machine Language, Assembly Language, assembler, Program loops, Programming Arithmetic and logic operations, subroutines, I-O Programming. Micro programmed Control: Control Memory, Address sequencing, Micro program Example, design of control Unit.07		07
4	Central Processing Unit: Introduction Instruction format, Addressing Modes, de Instruction Set Computer (RISC)Pipelin Processing, Pipelining, Arithmetic Pipelin Array Processors.	n, General Register Organization, Stack Organization, ata transfer and manipulation, Program Control, Reduced ne And Vector Processing, Flynn's taxonomy, Parallel le, Instruction, Pipeline, RISC Pipeline, Vector Processing,	08
5	Computer Arithmetic: Introduction, Addition and subtraction, Multiplication Algorithms (Booth Multiplication Algorithm), Division Algorithms, Decimal Arithmetic Unit. Input-Output Organization, Input-Output Interface, Asynchronous Data Transfer, Modes Of Transfer, Priority Interrupt, DMA, Input-Output Processor (IOP), CPUIOP Communication, Serial communication.0		08
6	Memory Organization: Memory Hier Memory, Cache Memory, Virtual Memo Interconnection Structures, Inter-proces Synchronization, Cache Coherence, Share	archy, Main Memory, Auxiliary Memory, Associative ry. Multiprocessors: Characteristics of Multiprocessors, sor Arbitration, Inter- processor Communication and d Memory Multiprocessors.	08
		Total	42
	Suggested Books		

• William Stallings, "Computer Organization and Architecture, PHI" 2. M. Morris Mano,

- M. Morris Mano, "Computer System Architecture", PHI
- J.D. Carpinelli, "Computer Systems Organization and Architecture," Pearson Education
- Heuring and Jordan, Pearson Education, "Computer Systems Design and Architecture"
 - Tor M. Aamodt, Wilson Wai Lun Fung, Timothy G. Rogers General-Purpose Graphics Processor Architecture

6AM4-05: Pattern Recognition

Credit: 3		Max Marks: 150 (IA :30, ETE:12	20)
	3L+ 0T+ 0P End Term Exams: 3hr		
S.No.	Cont	ents	Hours
-			
1	Introduction: Objective, scope, and outco	me of the course.	01
2	BASICS OF PROBABILITY, RANDOM PROCESSES AND LINEAR		
	ALGEBRA Probability: independence of	events, Conditional and joint probability,	
	Baves' theorem: Random Processes: S	tationary and nonstationary processes.	09
	Expectation, Autocorrelation, Cross-Corr	elation. Spectra. Linear Algebra: Inner	
	product, outer product. Inverses, Eigenvalu	es. Eigen vectors. Bayes Decision theory	
	product, outer product, <u>million</u> , <u>21</u> 801, un		
3	BAYES DECISION THEORY Minir	num-error-rate classification, Classifiers,	08
	Discriminate functions, Decision surfaces,	Normal density and discriminant functions,	00
	Discrete features		
4	PARAMETER ESTIMATION METHODS Maximum-Likelihood estimation,		07
	Gaussian case, Maximum a Posteriori estin	ation, Bayesian estimation, Gaussian case	
5	UNSUPERVISED LEARNING AND CLUSTERING Criterion functions for		
	clustering, Algorithms for clustering, K-	Means, Hierarchical and other methods,	07
	Cluster validation, Gaussian mixture mode	ls, Expectation-Maximization method for	
	parameter estimation, Maximum entropy estimation		
6	SEQUENTIAL PATTERN RECOGNITION: Hidden Markov Models (HMMs),		00
	Discrete HMMs, Continuous HMMs, NONPARAMETRIC TECHNIQUES FOR		υð
	DENSITY ESTIMATION: Parzen-window method, K-Nearest Neighbor method,		
	LINEAR DISCRIMINANT FUNCTIONS Gradient descent procedures, Perceptron,		
	Support vector machines		
	Tot	al	40

- Pattern Classification, Richard O. Duda, Peter E. Hart, David G. Stork John Wiley 2001
- Pattern Recognition, Konstantinos Koutroumbas and Sergios Theodoridis 4th Edition., Academic Press 2009
- Pattern Recognition and Machine Learning, Bishop, Christopher, Springer 2006

6AM5-11: Cloud Computing

Credit: 3		Max Marks: 150 (IA :30, ETE:120)	
	3L+ 0T+ 0P End Term Exams: 3hr		
S.No.	Contents		Hours
1	Introduction: Objective, scope and outcome of the course.		01
2	Introduction: Objective, scope and outcome of the course. Introduction Cloud Computing: Nutshell		
	of cloud computing, Enabling Technology, Historical development, Vision, feature Characteristics and		06
	components of Cloud Computing. Challenge	es, Risks and Approaches of Migration into Cloud. Ethical	00
	Issue in Cloud Computing, Evaluating the Cl	oud's Business Impact and economics, Future of the cloud.	
	Networking Support for Cloud Computing.	Ubiquitous Cloud and the Internet of Things	
3	Cloud Computing Architecture: Cloud 1	Reference Model, Layer and Types of Clouds, Services	
	models, Data centre Design and intercon	nection Network, Architectural design of Compute and	10
	Storage Clouds. Cloud Programming and	Software: Fractures of cloud programming, Parallel and	
	distributed programming paradigms-Map Reduce, Hadoop, High-level Language for Cloud.		
	Programming of Google App Engine.		
4	Virtualization Technology: Definition	, Understanding and Benefits of Virtualization.	
	Implementation Level of Virtualization, Virtualization Structure/Tools and Mechanisms, Hypervisor		9
	VMware, KVM, Xen. Virtualization: of CF	PU, Memory, I/O Devices, Virtual Cluster and Resources	-
	Management, Virtualization of Server, Desl	ctop, Network, and Virtualization of data-Centre.	
5	Securing the Cloud: Cloud Information	security fundamentals, Cloud security services, Design	
	principles, Policy Implementation, Cloud Co	omputing Security Challenges, Cloud Computing Security	
	Architecture. Legal issues in Cloud Comp	uting. Data Security in Cloud: Business Continuity and	07
	Disaster Recovery, Risk Mitigation, Under	standing and Identification of Threats in Cloud, SLA-	07
	Service Level Agreements, Trust Manageme	ent	
6	Cloud Platforms in Industry: Amazon we	eb services, Google AppEngine, Microsoft Azure Design,	
	Aneka: Cloud Application Platform -Integ	ration of Private and Public Clouds Cloud applications:	07
	Protein structure prediction, Data Analysis,	Satellite Image Processing, CRM	07
		Total	40

- Dan C Marinescu, Cloud Computing, Theory and Practice, MK Elsevier
- Rajkumar Buyya, James Broberg, Andrzej M. Goscinski, Cloud Computing: Principles and Paradigms, Wiley
- Barrie Sosinsky, Cloud Computing Bible, Wiley
- Jim Smith, Ravi Nair, Virtual Machines: Versatile Platforms for Systems and Processes, MK Elsevier

OFFICE OF THE DEAN ACADEMICS

6AM5-12: Distributed System

Credit: 3		Max Marks: 150 (IA :30, ETE:120)	
	3L+ 0T+ 0P End Term Exams: 3hr		
S.No.	contents		Hours
1	Introduction: Objective, scope and outcom	ne of the course.	01
2	Distributed Systems: Features of distributed systems, nodes of a distributed system, Distributed computation paradigms, Model of distributed systems, Types of Operating systems: Centralized Operating System, Network Operating Systems, Distributed Operating Systems & Cooperative Autonomous Systems, design issues in distributed operating systems. Systems Concepts and Architectures: Goals, Transparency, Services, Architecture Models, Distributed Computing Environment (DCE). Theoretical issues in distributed systems: Notions of time and state, states & events in a distributed system, time, clocks & event precedence, recording the state of distributed systems.08		
3	Concurrent Processes and Programmin Representation, Client/Server Model, Time Object Model Resource Servers, Cha (Language not included).Inter-process C Request/Reply and Transaction Communic studies.	g: Processes and Threads, Graph Models for Process e Services, Language Mechanisms for Synchronization, aracteristics of Concurrent Programming Languages communication and Coordination: Message Passing, ation, Name and Directory services, RPC, and RMI case	08
4	Distributed Process Scheduling: A Syste Communication, Dynamic Load Sharing Distributed File Systems: Transparenc implementation, Transaction Service and studies: Sun network file systems, Gene Andrew and Coda File Systems	em Performance Model, Static Process Scheduling with g and Balancing, Distributed Process Implementation. ies and Characteristics of DFS, DFS Design and Concurrency Control, Data and File Replication. Case eral Parallel file System and Window's file systems.	08
5	Distributed Shared Memory: Non-Uniform Memory Access Architectures, Memory Consistency Models, Multiprocessor Cache Systems, Distributed Shared Memory, Implementation of DSM systems. Models of Distributed Computation: Preliminaries, Causality, Distributed Snapshots, modelling a Distributed Computation, Failures in a Distributed System, Distributed Mutual Exclusion, Election, Distributed Deadlock handling, Distributed termination detection. 08		
6	Distributed Agreement : Concept of Faul Byzantine Agreement, Impossibility of Replicated Data Management: concepts a Update Propagation. CORBA case study Services.	ts, failure and recovery, Byzantine Faults, Adversaries, Consensus and Randomized Distributed Agreement. nd issues, Database Techniques, Atomic Multicast, and y: Introduction, Architecture, CORBA RMI, CORBA	08
		Total	41
	Suggested Books		

- Andrew S. Tannenbaum and Maarten Van Steen, Distributed Systems: Principles and Paradigms, Pearson
- George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair, Distributed Systems: Concepts and Design, Addison Wesley
- P. K. Sinha, Distributed Operating Systems: Concepts and Design, IEEE press
- M. Singhal and N. G. Shivaratri, Advanced Concepts in Operating Systems,, McGraw-Hill

Office: Bikaner Technical University, Bikaner Karni Industrial Area, Pugal Road, Bikaner-334004 Website: <u>https://btu.ac.in</u>

	Credit: 3	Max Marks: 150 (IA :30, ETE:1	.20)
	3L+ 0T+ 0P	End Term Exams: 3hr	
S.No.	Con	tents	Hours
1	Introduction: Objective, scope, and outco	me of the course.	1
2	Introduction - Evolution and importance of Data Mining-Types of Data and Patterns mined Technologies-Applications-Major issues in Data Mining. Knowing about Data- Data Preprocessing: Cleaning– Integration–Reduction–Data transformation and Discretization.		8
3	BI- Data Mining & Warehousing : Basic Concepts-Data Warehouse Modeling- OLAP and OLTP systems - Data Cube and OLAP operations–Data Warehouse Design and Usage-Business Analysis Framework for Data Warehouse Design- OLAP to Multidimensional Data Mining. Mining Frequent Patterns: Basic Concept – Frequent Item Set Mining Methods – Mining Association Rules – Association to Correlation Analysis.		9
4	Classification and Prediction: Issues - Decision Tree Induction - Bayesian Classification – Rule-Based Classification – k-Nearest mining Classification. Prediction – Accuracy and Error measures.		7
5	Clustering: Overview of Clustering – Types of Data in Cluster Analysis – Major Clustering Methods.		7
6	Introduction to BI -BI definitions and concepts- BI Framework-Basics of Data integration Introduction to Business Metrics and KPI - Concept of the dashboard and balanced scorecard. Tool for BI: Microsoft SQL server: Introduction to Data Analysis using SSAS tools Introduction to Data Analysis using SSIS tools- Introduction to Reporting Services using SSRS tools- Data Mining Implementation Methods.		8
	То	tal	40

6AM5-13: Data Mining & Business Intelligence

- Han, M. Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann
- M. Kantardzic, "Data mining: Concepts, models, methods and algorithms, John Wiley & Sons Inc
- Paulraj Ponnian, "Data Warehousing Fundamentals", John Willey.
- M. Dunham, "Data Mining: Introductory and Advanced Topics", Pearson Education.
- G. Shmueli, N.R. Patel, P.C. Bruce, "Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner", Wiley India

6AM4-21: Digital Image Processing Lab

Credit: 1.5 Max Marks: 75 (IA :45		Max Marks: 75 (IA :45, ETE:30)
	0L+ 0T+ 3P	End Term Exams: 2hr
S.No.	List of Experiments	
1	Point-to-point transformation. This laboratory experiment provides for thresholding an image and the evaluation of its histogram. Histogram equalization. This experiment illustrates the relationship among the intensities (gray levels) of an image and its histogram.	
2	Geometric transformations. This experiment shows image rotation, scaling, and translation. Two-dimensional Fourier transform	
3	Linear filtering using convolution. Highly selective filters.	
4	Ideal filters in the frequency domain. Non Linear filtering using convolutional masks. Edge detection. This experiment enables students to understand the concept of edge detectors and their operation in noisy images.	
5	Morphological operations: This experiment is intended so students can appreciate the effect of morphological operations using a small structuring element on simple binary images. The operations that can be performed are erosion, dilation, opening, closing, open-close, close-open.	

Credit: 1.5		Max Marks: 75 (IA :45, ETE:30)
0L+ 0T+ 3P End Term Exams: 2hr		End Term Exams: 2hr
S.No.	List of Experiments	
1	Convert the text into tokens	
2	Find the word frequency	
3	Demonstrate a bigram language model	
4	Demonstrate a trigram language model	
5	Generate regular expressions for a given text.	
6	Perform Lemmatization	
7	Perform Stemming	
8	Identify parts-of Speech using Penn Treebank tag set.	
9	Implement RNN for sequence labeling	
10	Build a Chunker	
11	Find the synonym of a word using Word	Net
12	Implement semantic role labeling to iden	ntify named entities
13	Translate the text using First-order logic	
14	Implement RNN for sequence labeling	
15	Implement POS tagging using LSTM	
16	Implement Named Entity Recognizer	
17	Word sense disambiguation by LSTM/C	RU

6AM4-22: Natural Language Processing Lab

6AIMIL4-23: Soft Computing Lab

	Credit: 1.5	Max Marks: 75 (IA :45, ETE:30)
	0L+ 0T+ 3P End Term Exams: 2hr	
S.No.		List of Experiments
1	Create a perceptron with an appropriate number of inputs and outputs. Train it using a fixed increment learning algorithm until no change in weights is required. Output the final weights	
2	Training a feed forward Neural network.	
3	Train Feed Forward neural Network with E	ack propagation
4	Building a Linear Regression Neural network	
5	Implementation of Radial basis function network	
6	Implementing crisp partitions for real-life Iris dataset	
7	Implement Union, Intersection, Compleme	nt and Difference operations on fuzzy sets.
8	Create Fuzzy relation by Cartesian product of any two fuzzy sets and perform max-min composition on two fuzzy relations	
9	Write a program to implement Hebb's rule	and Delta rule
10	Implementing SVM (Support Vector Mach	ine) classification by fuzzy concepts.
11	Implementation of Self-Organizing Map	
12	Implementation of back propagation algori	thm for solving face recognition problem
13	Implementation of Ant Colony Optimization	on on real life dataset
14	Implementation of Neuro-Fuzzy-GA method	ods on real life dataset.
	Suggested Dooks	

Suggested Books

- R. Rajasekaran and G. A. Vijayalakshmi Pai, Neural Networks, Fuzzy Logic, and Genetic Algorithms: Synthesis and Applications, Prentice Hall of India
- L. Fausett, Fundamentals of Neural Networks, Prentice Hall

Experiments can be implemented on Matlab

6AM4-24: Mobile Application Development Lab

Credit: 1.5		Max Marks: 75 (IA :45, ETE:30)
	0L+ 0T+ 3P	End Term Exams: 2hr
S.No.	List of Experiments	
1	To study Android Studio and android studio installation. Create "Hello World" application.	
2	To understand Activity, Intent, Create sample application with login module. (Check username and password).	
3	Design simple GUI application with activity and intents e.g. calculator.	
4	Develop an application that makes use of RSS Feed.	
5	Write an application that draws basic graphical primitives on the screen	
6	Create an android app for database creation using SQLite Database.	
7	Develop a native application that uses GPS location information	
8	Implement an application that writes data to the SD card.	
9	Design a gaming application	
10	Create an application to handle images and videos according to size.	